Resumen y tablas para modulaciones digitales

De testwiki
Ir a la navegación Ir a la búsqueda

G¯x(f)=σx2Rs|P(f)|2+mx2Rs2k=|P(kRs)|2δ(fkRs)


H(f)=Hβ(f)*1R(fR)=π4βcos(π2βf)(f2β)*1R(fR)h(t)=hβ(t)sinc(Rt)=cos(2βπt)1(4βt)2sinc(Rt)

Con filtro optimo: hR(t)=p*(Tst)

VT12πσ2e(tm)22σ2t=Q(|VTm|σ2)Pe=pr('0sent)p(error'0sent)+pr('1sent)p(error'1sent)=pr('0sent)Q(|VTm'0|σ2)+pr('1sent)Q(|VTm'1|σ2)sT(t)=k=0akp(tkTs)myPR(t)=0TssT(t)kp*(t)tσyPR(t)2=η2Ep(t)=η20Tsp2(t)t


s(t) ak G¯s(f) Q(x)
Unipolar NRZ

k=0akp(tkTs)

ak={0,+A} A24Tssinc2(Tsf)+A24δ(fRs) Q(Ebη)
Unipolar RZ

k=0akp(tkTs)

ak={0,+A} A216Tssinc2(Ts2f)+A216k=sinc2(k2)δ(fkRs) Q(Ebη)
Polar

k=0akp(tkTs)

ak={A,+A} A2Tssinc2(Tsf) Q(2Ebη)
Bipolar

k=0akp(tkTs)

ak={0,±A} A22Tssinc2(Tsf) 32Q(Ebη)
Manchester k=0akp(tkTs) ak={A,+A} A2Tssinc2(Tsf2)sin2(πfTs2) Q(2Ebη)
ASK(OOK)

Ack=0akp(tkTs)cos(ωct)

ak={0,+A} A242Tssinc2(Ts(f±fc))+A242δ(f±fcRs) Q(Ebη)
BPSK(PRK)

Ack=0akp(tkTs)cos(ωct)

ak={1,+1} A2Tssinc2(Ts(f±fc))4 Q(2Ebη)
QPSK Ack=aIkp(tkTs)cos(ωct)Ack=aQkp(tkTs)sin(ωct) aIk={12,+12}aQk={12,+12} Ac24Tssinc2(Ts(f±fc)) Q(2Ebη)
MSK Ack=aIkcos(π2Tbt)p(tkTs)cos(ωct)Ack=aQksin(π2Tbt)p(tkTs)sin(ωct) aIk={A,+A}aQk={A,+A} Ac2σak22Tb(4π)2[cos(2Tbπ(f±fc))1(4Tb(f±fc))2]2 Q(2Ebη)
M-PSK Ack=p(tkTs)cos(ωct+φk) aIk=cos(πMi);i=1,2,3...aQk=sin(πMi);i=1,2,3... Ac24Tssinc2(Ts(f±fc)) Q(2Esηsin(πM))
QAM Ack=aIkp(tkTs)cos(ωct)Ack=aQkp(tkTs)sin(ωct) aIk={±12,±32,...}aQk={±12,±32,...} Ac22σak2Tssinc2(Tsf) 2(11M)Q(3M1Esη)
FSK Ack=p(tkTs)cos(bkωct)=xASK1(t)+xASK2(t) ak={0,+A} Ac242Tssinc2(Ts(f±fc1))+Ac242δ(f±fc1Rs)+Ac242Tssinc2(Ts(f±fc2))+Ac242δ(f±fc2Rs) Q(Ebη)