x^(t)=x(t)*hhilbert(t)=∫−∞∞x(τ)π(t−τ)∂τ → X^(f)=X(f)(−jsign(f))Ryx(τ)=Rxy*(τ) ; Gx^(f)=Gx(f) ; Rx^x(τ)=−Rxx^(τ)x+(t)=x(t)+jx^(t)x−(t)=x(t)−jx^(t)X+(f)={2X(f),f>00,f<0=X(f)(1+sign(f))X−(f)={0,f>02X(f),f<0=X(f)(1−sign(f))Gx+(f)={4Gx(f),f>00,f<0=2Gx(f)(1+sign(f))Gx−(f)={0,f>04Gx(f),f<0=2Gx(f)(1−sign(f))Sx+=Sx−=2SxRx+x−(τ)=0x~(t)=x+(t)e−jωct ; X~(f)=X+(f+fc)Y~(f)=X~(f)⋅H~(f)2x~(t)=xI(t)+jxQ(t)=e(t)ejφ(t)x(t): Se n~ al paso-bandax~(t),xI(t),xQ(t),e(t) : Se n~ ales paso-bajoxI(t)=Componente en fase de x(t) (I: In phase)xQ(t)=Componente en cuadratura de x(t) (Q: Quadrature)e(t)= Envolvente (el modulo) de x(t)φ(t)= Fase de x(t) x(t)=xI(t)cos(ωct)−xQ(t)sin(ωct)=e(t)cos(ωct+φ(t))e(t)=|x~(t)|=xI2(t)+xQ2(t)=x2(t)+x^2(t)φ(t)=arctan(xQ(t)xI(t))xI(t)=e(t)cos(φ(t)) ; xQ(t)=e(t)sin(φ(t))GxI(f)=1╱4(Gx+(f+fc)+Gx−(f−fc))Sx=SI=SQ
Ac(1+mx(t))cos(ωct)
Ac2(δ(f−fc)+δ(f+fc))+Ac2m(X(f−fc)+X(f+fc))
Acx(t)cos(ωct)
Ac24(Gx(f−fc)+Gx(f+fc))
Ac2(x(t)cos(ωct)−x^(t)sin(ωct))
Ac4[X(f−fc)(1+sign(f−fc))]+[X(f+fc)(1−sign(f+fc))]
Accos(ωct+φΔx(t))xPMFMtone(t)=s(t)=Ac∑k=−∞∞Jk(β)cos(ωct+kωmt)
Stone(f)=Ac2∑k=−∞∞Jk(β)[δ(f−(fc+kfm))+δ(f+(fc+kfm))]
Accos(ωct+2πfΔ∫−∞tx(λ)∂λ)xPMFMtone(t)=s(t)=Ac∑k=−∞∞Jk(β)cos(ωct+kωmt)
Ac24(δ(f−fc)+δ(f+fc))+Ac24⋅m2(Gx(f−fc)+Gx(f+fc))
Ac22(1+m2Sx)
2W
m2Sx1+m2Sxγ
Ac22Sx
γ
Ac28[Gx(f−fc)(1+sign(f−fc))]+[Gx(f+fc)(1−sign(f+fc))]
Ac24Sx
W
Ac24∑k=−∞∞|Jk(β)|2[δ(f−(fc+kfm))+δ(f+(fc+kfm))]
Ac22
2(βPMFM+1)W=2(φΔAm+1)W
φΔ2Sxγ
2(βPMFM+1)W=2(AmfΔfm+1)W
3(fΔW)2Sxγ