Resumen y tablas

De testwiki
Ir a la navegación Ir a la búsqueda

x^(t)=x(t)*hhilbert(t)=x(τ)π(tτ)τ  X^(f)=X(f)(jsign(f))Ryx(τ)=Rxy*(τ) ; Gx^(f)=Gx(f) ; Rx^x(τ)=Rxx^(τ)x+(t)=x(t)+jx^(t)x(t)=x(t)jx^(t)X+(f)={2X(f),f>00,f<0=X(f)(1+sign(f))X(f)={0,f>02X(f),f<0=X(f)(1sign(f))Gx+(f)={4Gx(f),f>00,f<0=2Gx(f)(1+sign(f))Gx(f)={0,f>04Gx(f),f<0=2Gx(f)(1sign(f))Sx+=Sx=2SxRx+x(τ)=0x~(t)=x+(t)ejωct ; X~(f)=X+(f+fc)Y~(f)=X~(f)H~(f)2x~(t)=xI(t)+jxQ(t)=e(t)ejφ(t)x(t): Se n~ al paso-bandax~(t),xI(t),xQ(t),e(t) : Se n~ ales paso-bajoxI(t)=Componente en fase de x(t) (I: In phase)xQ(t)=Componente en cuadratura de x(t) (Q: Quadrature)e(t)= Envolvente (el modulo) de x(t)φ(t)= Fase de x(t) x(t)=xI(t)cos(ωct)xQ(t)sin(ωct)=e(t)cos(ωct+φ(t))e(t)=|x~(t)|=xI2(t)+xQ2(t)=x2(t)+x^2(t)φ(t)=arctan(xQ(t)xI(t))xI(t)=e(t)cos(φ(t)) ; xQ(t)=e(t)sin(φ(t))GxI(f)=14(Gx+(f+fc)+Gx(ffc))Sx=SI=SQ

s(t) S(f)
AM

Ac(1+mx(t))cos(ωct)

Ac2(δ(ffc)+δ(f+fc))+Ac2m(X(ffc)+X(f+fc))

DSB

Acx(t)cos(ωct)

Ac24(Gx(ffc)+Gx(f+fc))

SSB

Ac2(x(t)cos(ωct)x^(t)sin(ωct))

Ac4[X(ffc)(1+sign(ffc))]+[X(f+fc)(1sign(f+fc))]

PM

Accos(ωct+φΔx(t))xPMFMtone(t)=s(t)=Ack=Jk(β)cos(ωct+kωmt)

Stone(f)=Ac2k=Jk(β)[δ(f(fc+kfm))+δ(f+(fc+kfm))]

FM

Accos(ωct+2πfΔtx(λ)λ)xPMFMtone(t)=s(t)=Ack=Jk(β)cos(ωct+kωmt)

Stone(f)=Ac2k=Jk(β)[δ(f(fc+kfm))+δ(f+(fc+kfm))]


Gs(f) Ps βT (SN)D
AM

Ac24(δ(ffc)+δ(f+fc))+Ac24m2(Gx(ffc)+Gx(f+fc))

Ac22(1+m2Sx)

2W

m2Sx1+m2Sxγ

DSB

Ac24(Gx(ffc)+Gx(f+fc))

Ac22Sx

2W

γ

SSB

Ac28[Gx(ffc)(1+sign(ffc))]+[Gx(f+fc)(1sign(f+fc))]

Ac24Sx

W

γ

PM

Ac24k=|Jk(β)|2[δ(f(fc+kfm))+δ(f+(fc+kfm))]

Ac22

2(βPMFM+1)W=2(φΔAm+1)W

φΔ2Sxγ

FM

Ac24k=|Jk(β)|2[δ(f(fc+kfm))+δ(f+(fc+kfm))]

Ac22

2(βPMFM+1)W=2(AmfΔfm+1)W

3(fΔW)2Sxγ