Cálculo de la probabilidad de error para las diferentes codificaciones

De testwiki
Ir a la navegación Ir a la búsqueda

VT12πσ2e(tm)22σ2t=Q(|VTm|σ2)Pe=pr('0sent)p(error'0sent)+pr('1sent)p(error'1sent)myPR(t)=0TssT(t)kp*(t)tσyPR(t)2=η2Ep(t)=η20Tsp2(t)tsT(t)=k=0akp(tkTs)

Probabilidad de error para codificación unipolar NRZ

Ts=Tbp(t)=(tTs2PppTs)ak={Pa'1=APmla'0=0m'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=ATsm'0=0Tss'0(t)kp*(t)t=0VT=m'1+m'02=ATs2σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2TsPe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|ATs2ATs|η2Ts)+0.5Q(|ATs20|η2Ts)=Pe=Q(|ATs2ATs|η2Ts)=Q(ATs2η2Ts)=Q(A2Ts24η2Ts)=Q(A2Ts2η)

Eb=0.5E'1+0.5E'0E'1=Ep=0Tss'12(t)t=A2TsE'0=0Eb=A2Ts2Q(A2Ts2η)=Q(Ebη)=Q(Ep2η)

Probabilidad de error para codificación unipolar RZ

Ts=Tbp(t)=(tTs4Ts2)ak={a'1=Aa'0=0m'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=ATs2m'0=0Tss'0(t)kp*(t)t=0VT=m'1+m'02=ATs4σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2Ts2Pe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|ATs4ATs2|η4Ts)+0.5Q(|ATs40|η4Ts)=Pe=Q(ATs4η4Ts)=Q(A2Ts216η4Ts)=Q(A2Ts4η)

Eb=0.5E'1+0.5E'0E'1=0Tss'12(t)t=A2Ts2E'0=0Tss'02(t)t=0Eb=A2Ts4Q(A2Ts4η)=Q(Ebη)

Probabilidad de error para codificación polar

Ts=Tbp(t)=(tTs2Ts)ak={a'1=Aa'0=Am'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=ATsm'0=0Tss'0(t)kp*(t)t=0TsAp(t)p*(t)t=ATsVT=m'1+m'02=0σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2TsPe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|0ATs|η2Ts)+0.5Q(|0(ATs)|η2Ts)=Pe=Q(ATsη2Ts)=Q(A2Ts2η2Ts)=Q(2A2Tsη)

Eb=0.5E'1+0.5E'0E'1=0Tss'12(t)t=A2TsE'0=0Tss'02(t)t=A2TsEb=A2TsQ(2A2Tsη)=Q(2Ebη)

Probabilidad de error para codificación bipolar

Ts=Tbp(t)=(tTs2Ts)ak={a'1=±Aa'0=0m'1=0Tss'1(t)kp*(t)t=0Ts±Ap(t)p*(t)t=±ATsm'0=0Tss'0(t)kp*(t)t=0VT=m'1+m'02=±ATs2σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2TsPe=14Q(|VTm|σ2)+14Q(|VTm|σ2)+122Q(|VTm|σ2)=32Q(|VTm|σ2)Pe=32Q(ATs2η2Ts)=32Q(A2Ts24η2Ts)=32Q(A2Ts2η)

Eb=0.5E'1+0.5E'0E'1=Ep=0Tss'12(t)t=A2TsE'0=0Eb=A2Ts2Pe32Q(A2Ts2η)=32Q(Ebη)


Probabilidad de error total sin aproximaciones

Pe=p(error+1sent)+p(error1sent)+p(error0sent)p(0detected+1sent)+p(0detected1sent)+p(+1detected0sent)+p(1detected0sent)Pe=p(0detected+1sent)+p(0detected1sent)+p(+1detected0sent)+p(1detected0sent)+p(1detected+1sent)+p(+1detected1sent)Pe=32Q(A2Ts2η)+14Q(|VTm|σ2)+14Q(|VTm|σ2)=32Q(A2Ts2η)+14Q(ATs2(ATs)η2Ts)+14Q(ATs(ATs2)η2Ts)=32Q(A2Ts2η)+12Q(3ATs2η2Ts)=32Q(A2Ts2η)+12Q(9A2Ts24η2Ts)Pe=32Q(A2Ts2η)+12Q(9A2Ts2η)Eb=A2Ts2Pe=32Q(Ebη)+12Q(9Ebη)

Probabilidad de error para codificación manchester

Ts=Tbp(t)=(tTs4Ts2)(t3Ts4Ts2)ak={a'1=Aa'0=Am'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=ATsm'0=0Tss'0(t)kp*(t)t=0TsAp(t)p*(t)t=ATsVT=m'1+m'02=0σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2TsPe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|0ATs|η2Ts)+0.5Q(|0(ATs)|η2Ts)=Pe=Q(ATsη2Ts)=Q(A2Ts2η2Ts)=Q(2A2Tsη)

Eb=0.5E'1+0.5E'0E'1=0Tss'12(t)t=A2TsE'0=0Tss'02(t)t=A2TsEb=A2TsQ(2A2Tsη)=Q(2Ebη)


Probabilidad de error para codificación unipolar NRZ (TRIANGULAR)

Ts=Tbp(t)=Λ(tTs4Ts2)ak={a'1=Aa'0=0m'0=0Tss'0(t)kp*(t)t=0m'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=A20Ts2(tTs2)2t=2A4Ts20Ts2t2t=2A4Ts2t33|0Ts2=8A3Ts2(Ts2)3=8ATs38=ATs3VT=m'1+m'02=ATs6σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2Ts3Pe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|ATs6ATs3|η2Ts3)+0.5Q(|ATs60|η2Ts3)=Pe=Q(ATs6ηTs6)=Q(A2Ts262ηTs6)=Q(A2Ts6η)

Eb=0.5E'1+0.5E'0E'1=Ep=0Tss'12(t)t=A2Ts3E'0=0Eb=A2Ts6Q(A2Ts6η)=Q(Ebη)

Probabilidad de error para triangular NRZ no óptima

(Señal original-> triangular, filtro de recepcion = cuadrado)


Ts=Tbakp(t)=Λ(tTs4Ts2)p(t)=(tTs)ak={a'1=Aa'0=0m'0=0Tss'0(t)kp*(t)t=0m'1=0Tss'1(t)kp*(t)t=0TsAp(t)p*(t)t=ATs2VT=m'1+m'02=ATs4σyPR(t)2=η2Ep(t)=η20Tsp2(t)t=η2TsPe=p'1Q(|VTm|σ2)+p'0Q(|VTm|σ2)=0.5Q(|ATs4ATs2|η2Ts)+0.5Q(|ATs40|η2Ts)=Pe=Q(ATs4η2Ts)=Q(A2Ts216η2Ts)=Q(A2Ts8η)

Eb=0.5E'1+0.5E'0E'1=Ep=0Tss'12(t)t=A2Ts3E'0=0Eb=A2Ts6Q(A2Ts8η)=Q(34Ebη)

Plantilla:Navegación