Función cuadrática

De testwiki
Revisión del 23:36 29 ene 2024 de imported>Green Mostaza Bot (Bot: Ortografía y otros (v0.37); cambios superficiales)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

De vital importancia en matemáticas y física es la función cuadrática o de segundo grado.

Una función polinómica de grado dos o función cuadrática es la que corresponde a un polinomio en x de segundo grado, según la forma:

Gráficas de funciones cuadráticas.
f(x)=ax2+bx+c

donde a, b y c son constantes y a es distinto de 0.

La representación gráfica en el plano XY haciendo:

y=f(x)

esto es:

y=ax2+bx+c

es una parábola vertical, orientada hacia arriba o hacia abajo según el signo de a.

Estudio de la función

Corte con el eje y

La función corta el eje y en el punto y = f(0), es decir, la parábola corta el eje y cuando x vale cero (0):

y=f(0)=a02+b0+c

lo que resulta:

y=f(0)=c

la función corta el eje y en el punto (0, c), siendo c el término independiente de la función.

Corte con el eje x

La función corta al eje x cuando y vale 0:

ax2+bx+c=0

las distintas soluciones de esta ecuación de segundo grado, son los casos de corte con el eje x, que se obtienen como es sabido por la expresión:

x=b±b24ac2a

donde:

b24ac

se le llama discriminante, Δ:

Δ=b24ac

según el signo del discriminante podemos distinguir:

  • Δ > 0, la ecuación tiene dos soluciones, por tanto la parábola cortara al eje x en dos puntos: x1 y x2.
  • Δ = 0, la ecuación tiene una única solución en x1, la parábola solo tiene un punto en común con el eje x, el cual es el vértice de la función donde las dos ramas de la parábola confluyen.
  • Δ < 0, la ecuación no tiene solución real, y la parábola no corta al eje x.

Forma factorizada

Todo función cuadrática se puede factorizar en función de sus raíces. Dada:

f(x)=ax2+bx+c

se puede factorizar como:

f(x)=a(xx1)(xx2)

siendo a el coeficiente principal de la función, por ello se extrae siempre como factor común, de no escribirse, el coeficiente de x2 sería siempre 1. x1 y x2 representan las raíces de f(x). En el caso de que el Discriminante Δ sea igual a 0 entonces x1=x2 por lo que podríamos escribir:

f(x)=a(xx1)2

En este caso a x1 se la denomina raíz doble, ya que su orden de multiplicidad es 2.

Forma canónica

Toda función cuadrática puede ser expresada mediante el cuadrado de un binomio de la siguiente manera:

f(x)=a(xh)2+k

A esta forma de expresión se la llama forma canónica. Siendo a el coeficiente principal y el par ordenado (h;k) las coordenadas del vértice de la parábola. Para llegar a esta expresión se parte de la forma polinómica y se realiza el siguiente procedimiento:

  • Dado:
f(x)=ax2+bx+c
  • Se extrae a como factor común en el término cuadrático y en el lineal.
f(x)=a(x2+bax)+c
f(x)=a(x2+bax+b24a2)+cb24a
  • Se factoriza formando el cuadrado de un binomio.
f(x)=a(x+b2a)2+cb24a
  • sustituyendo:
h=b2a, k=cb24a
  • la expresión queda:
f(x)=a(xh)2+k

Extremos relativos

Para localizar los extremos relativos, se calcula la derivada de la función, y se iguala a cero, la solución a esta ecuación son los posibles máximos y mínimos de la función, en este caso, partiendo de la función cuadrática:

y=ax2+bx+c

calculamos su derivada respecto a x:

dydx=2ax+b

que si la igualamos a cero, tenemos:

2ax+b=0

donde x valdrá:

x=b2a

En la vertical que pasa por este valor de x se encontrar el valor máximo, mínimo o relativo de la función.

Determinar la ecuación conocidos tres puntos

Partiendo de la forma de la ecuación:

y=ax2+bx+c

y conocidos tres puntos del plano xy por los que pasa una función polinómica de segundo grado:

(x1,y1),(x2,y2),(x3,y3)

se cumplira que:

{y1=ax12+bx1+cy2=ax22+bx2+cy3=ax32+bx3+c

con lo que tenemos un sistema de tres ecuaciones con tres incógnitas, donde las incógnitas son: a, b y c, este sistema tendrá solución si el determinante de los coeficientes de las incógnitas es distinto de cero.

Representando el sistema ordenado de forma convencional:

{ax12+bx1+c=y1ax22+bx2+c=y2ax32+bx3+c=y3

Con lo que podemos calcular los valores de los coeficientes:

a=|y1x11y2x21y3x31||x12x11x22x21x32x31| ,b=|x12y11x22y21x32y31||x12x11x22x21x32x31| ,c=|x12x1y1x22x2y2x32x3y3||x12x11x22x21x32x31|

bg:Квадратна функция bs:Kvadratna funkcija ca:Funció quadràtica eo:Kvadrata funkcio ka:კვადრატული ფუნქცია km:អនុគមន៍ដឺក្រេទី២ lo:ຕຳລາຂັ້ນສອງ lt:Kvadratinė funkcija mn:Квадрат функц nl:Kwadratische functie pl:Funkcja kwadratowa ro:Funcţie pătratică sk:Kvadratická funkcia

cs:Kvadratická funkce de:Quadratische Funktion en:Quadratic function ja:二次関数 pt:Função quadrática ru:Квадратичная функция sl:Kvadratna funkcija sv:Andragradsfunktion zh:二次函数