Plantilla:Ortografía
PSK (Phase Shift Keying)
s P S K ( t ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t + φ k ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t ) cos ( φ k ) ⏟ I k − A c ∑ k = − ∞ ∞ p ( t − k T s ) sin ( ω c t ) sin ( φ k ) ⏟ Q k cos 2 x + sin 2 x = 1 → I k 2 + Q k 2 = 1
Dependiendo del numero de niveles tenemos diferentes tipos de PSK
BPSK (Binary Phase Shift Keying)
Tambien llamada PRK (Phase Reversal Keying).
Constellation diagram for BPSK.
s B P S K ( t ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t + φ k ) = φ k = { 0 , π } → s B P S K ( t ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t ) cos ( φ k ) ⏟ I k
Por lo que vemos, para este caso particular de PSK, la señal puede ser modelada como una codificacion polar modulada por un coseno
x B P S K ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) cos ( ω c t ) x I ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) , x Q ( t ) = 0 G ¯ I ( f ) = G p o l a r ( f ) = A 2 T s sinc 2 ( T s f ) G x ( f ) = G I ( f − f c ) + G I ( f + f c ) 4 + G Q ( f − f c ) + G Q ( f + f c ) 4 → G x ( f ) = G I ( f ± f c ) 4 → G x B P S K ( f ) = A 2 T s sinc 2 ( T s ( f ± f c ) ) 4
Para la probabilidad de error (BER):
BER de BPSK
QPSK (Quadrature Phase Shift Keying)
s P S K ( t ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t + φ k ) = A c ∑ k = − ∞ ∞ p ( t − k T s ) cos ( ω c t ) cos ( φ k ) ⏟ I k − A c ∑ k = − ∞ ∞ p ( t − k T s ) sin ( ω c t ) sin ( φ k ) ⏟ Q k
Existe más de un tipo de QPSK, la que se utiliza en la práctica:
Constellation diagram for QPSK with Gray coding. Each adjacent symbol only differs by one bit.
φ k
I k
Q k
+ π ╱ 4
1 2
1 2
+ 3 π ╱ 4
− 1 2
1 2
− 3 π ╱ 4
− 1 2
− 1 2
− π ╱ 4
1 2
− 1 2
s Q P S K ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) cos ( ω c t ) − A c ∑ k = − ∞ ∞ Q k ⋅ p ( t − k T s ) sin ( ω c t ) s I ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) s Q ( t ) = A c ∑ k = − ∞ ∞ Q k ⋅ p ( t − k T s )
Ahora, para sacar la densidad espectral de potencia:
s I ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) → I k = { 1 2 , − 1 2 , − 1 2 , 1 2 } G ¯ x ( f ) = σ a k 2 ⋅ R s | P ( f ) | 2 + m a k 2 ⋅ R s 2 ∑ k = − ∞ ∞ | P ( k R s ) | 2 δ ( f − k R s ) | P ( f ) | 2 = T s 2 sinc 2 ( T s f ) m I k = 1 2 ⋅ 1 4 + ( − 1 2 ) ⋅ 1 4 + ( − 1 2 ) ⋅ 1 4 + 1 2 ⋅ 1 4 = 0 P I k = ( 1 2 ) 2 ⋅ 1 4 + ( − 1 2 ) 2 ⋅ 1 4 + ( − 1 2 ) 2 ⋅ 1 4 + ( 1 2 ) 2 ⋅ 1 4 = 1 2 σ I k 2 = P I k − m I k 2 = 1 2 G ¯ x ( f ) = σ a k 2 ⋅ R s | P ( f ) | 2 + m a k 2 ⏟ 0 ⋅ R s 2 ∑ k = − ∞ ∞ | P ( k R s ) | 2 δ ( f − k R s ) = σ a k 2 ⏟ ( 1 ╱ 2 ) 2 ⋅ R s ⋅ T s 2 sinc 2 ( T s f ) = G ¯ I ( f ) = A c 2 σ a k 2 T s sinc 2 ( T s f ) = A c 2 2 T s sinc 2 ( T s f )
s Q ( t ) = A c ∑ k = − ∞ ∞ Q k ⋅ p ( t − k T s ) → Q k = { 1 2 , 1 2 , − 1 2 , − 1 2 } → m a k = 0 , σ a k 2 = 1 2 m Q k = 1 2 ⋅ 1 4 + 1 2 ⋅ 1 4 + ( − 1 2 ) ⋅ 1 4 + ( − 1 2 ) ⋅ 1 4 = 0 P Q k = ( 1 2 ) 2 ⋅ 1 4 + ( 1 2 ) 2 ⋅ 1 4 + ( − 1 2 ) 2 ⋅ 1 4 + ( − 1 2 ) 2 ⋅ 1 4 = 1 2 σ Q k 2 = P Q k − m Q k 2 = 1 2 G ¯ Q ( f ) = A c 2 σ a k 2 T s sinc 2 ( T s f ) = A c 2 2 T s sinc 2 ( T s f )
m I k = m Q k = 0 σ I k 2 = σ Q k 2 = 1 2 G ¯ I ( f ) = G ¯ Q ( f ) = A c 2 σ a k 2 T s sinc 2 ( T s f ) = A c 2 2 T s sinc 2 ( T s f ) G x ( f ) = G I ( f − f c ) + G I ( f + f c ) 4 + G Q ( f − f c ) + G Q ( f + f c ) 4 → G Q P S K ( f ) = 2 G I / Q ( f − f c ) + G I / Q ( f + f c ) 4 = G I / Q ( f ± f c ) 2 = A c 2 4 T s sinc 2 ( T s ( f ± f c ) )
Para la probabilidad de error (BER):
BER de QPSK
Existe otro tipo de QPSK:
4PSK
φ k
I k
Q k
0
+ 1
0
π ╱ 2
0
+ 1
π
− 1
0
− π ╱ 2
0
− 1
s Q ( t ) = A c ∑ k = − ∞ ∞ I k ⋅ p ( t − k T s ) → I k = { + 1 , 0 , − 1 , 0 } m a k = + 1 ⋅ 1 4 + 0 ⋅ 1 4 + ( − 1 ) ⋅ 1 4 + 0 ⋅ 1 4 = 0 P a k = + 1 2 ⋅ 1 4 + 0 ⋅ 1 4 + ( − 1 ) 2 ⋅ 1 4 + 0 ⋅ 1 4 = 1 2 σ a k 2 = P a k − m a k 2 = 1 2 s Q ( t ) = A c ∑ k = − ∞ ∞ Q k ⋅ p ( t − k T s ) → Q k = { 0 , + 1 , 0 , − 1 } m a k = 0 ⋅ 1 4 + 1 ⋅ 1 4 + 0 ⋅ 1 4 + ( − 1 ) ⋅ 1 4 = 0 P a k = 0 ⋅ 1 4 + 1 2 1 4 + 0 ⋅ 1 4 + ( − 1 ) 2 ⋅ 1 4 = 1 2 σ a k 2 = P a k − m a k 2 = 1 2
G 4 P S K ( f ) = A c 2 4 T s sinc 2 ( T s ( f ± f c ) )
Para la probabilidad de error (BER):
BER de 4PSK
Como consecuencia final, vemos que la media y varianza de una señal PSK es constante:
m I k = m Q k = 0 σ I k 2 = σ Q k 2 = 1 2
8-PSK,16-PSK…
Como se ha visto, la media y varianza de la señal no cambia, por lo que la densidad espectral de potencia será siempre igual independientemente del número de símbolos usados:
G P S K ( f ) = A c 2 4 T s sinc 2 ( T s ( f ± f c ) )
Constellation diagram for 8-PSK with Gray coding.
Para la probabilidad de error (BER):
BER de M-PSK
DPSK
OQPSK
Signal doesn't cross zero, because only one bit of the symbol is changed at a time
π /4–QPSK
Dual constellation diagram for π/4-QPSK. This shows the two separate constellations with identical Gray coding but rotated by 45° with respect to each other.
Plantilla:Navegación